Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
Sci Rep ; 12(1): 11735, 2022 07 19.
Article in English | MEDLINE | ID: covidwho-1947493

ABSTRACT

Whole genome sequencing of SARS-CoV-2 has occurred at an unprecedented scale, and can be exploited for characterising outbreak risks at the fine-scale needed to inform control strategies. One setting at continued risk of COVID-19 outbreaks are higher education institutions, associated with student movements at the start of term, close living conditions within residential halls, and high social contact rates. Here we analysed SARS-CoV-2 whole genome sequences in combination with epidemiological data to investigate a large cluster of student cases associated with University of Glasgow accommodation in autumn 2020, Scotland. We identified 519 student cases of SARS-CoV-2 infection associated with this large cluster through contact tracing data, with 30% sequencing coverage for further analysis. We estimated at least 11 independent introductions of SARS-CoV-2 into the student population, with four comprising the majority of detected cases and consistent with separate outbreaks. These four outbreaks were curtailed within a week following implementation of control measures. The impact of student infections on the local community was short-term despite an underlying increase in community infections. Our study highlights the need for context-specific information in the formation of public health policy for higher educational settings.


Subject(s)
COVID-19 , SARS-CoV-2 , COVID-19/epidemiology , Disease Outbreaks , Genomics , Health Planning , Humans , SARS-CoV-2/genetics , United States , Universities
2.
Elife ; 112022 01 20.
Article in English | MEDLINE | ID: covidwho-1634530

ABSTRACT

Despite an unprecedented global research effort on SARS-CoV-2, early replication events remain poorly understood. Given the clinical importance of emergent viral variants with increased transmission, there is an urgent need to understand the early stages of viral replication and transcription. We used single-molecule fluorescence in situ hybridisation (smFISH) to quantify positive sense RNA genomes with 95% detection efficiency, while simultaneously visualising negative sense genomes, subgenomic RNAs, and viral proteins. Our absolute quantification of viral RNAs and replication factories revealed that SARS-CoV-2 genomic RNA is long-lived after entry, suggesting that it avoids degradation by cellular nucleases. Moreover, we observed that SARS-CoV-2 replication is highly variable between cells, with only a small cell population displaying high burden of viral RNA. Unexpectedly, the B.1.1.7 variant, first identified in the UK, exhibits significantly slower replication kinetics than the Victoria strain, suggesting a novel mechanism contributing to its higher transmissibility with important clinical implications.


Subject(s)
COVID-19/virology , RNA, Viral/metabolism , SARS-CoV-2/pathogenicity , Animals , Chlorocebus aethiops/genetics , RNA/metabolism , RNA, Viral/genetics , SARS-CoV-2/genetics , Vero Cells , Viral Proteins/metabolism , Virus Replication/physiology
3.
Science ; 374(6567): eabj3624, 2021 Oct 29.
Article in English | MEDLINE | ID: covidwho-1440797

ABSTRACT

Inherited genetic factors can influence the severity of COVID-19, but the molecular explanation underpinning a genetic association is often unclear. Intracellular antiviral defenses can inhibit the replication of viruses and reduce disease severity. To better understand the antiviral defenses relevant to COVID-19, we used interferon-stimulated gene (ISG) expression screening to reveal that 2'-5'-oligoadenylate synthetase 1 (OAS1), through ribonuclease L, potently inhibits severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). We show that a common splice-acceptor single-nucleotide polymorphism (Rs10774671) governs whether patients express prenylated OAS1 isoforms that are membrane-associated and sense-specific regions of SARS-CoV-2 RNAs or if they only express cytosolic, nonprenylated OAS1 that does not efficiently detect SARS-CoV-2. In hospitalized patients, expression of prenylated OAS1 was associated with protection from severe COVID-19, suggesting that this antiviral defense is a major component of a protective antiviral response.


Subject(s)
2',5'-Oligoadenylate Synthetase/genetics , 2',5'-Oligoadenylate Synthetase/metabolism , COVID-19/genetics , COVID-19/physiopathology , RNA, Double-Stranded/metabolism , RNA, Viral/metabolism , SARS-CoV-2/physiology , 5' Untranslated Regions , A549 Cells , Animals , COVID-19/enzymology , COVID-19/immunology , Chiroptera/genetics , Chiroptera/virology , Coronaviridae/enzymology , Coronaviridae/genetics , Coronaviridae/physiology , Endoribonucleases/metabolism , Humans , Interferons/immunology , Isoenzymes/genetics , Isoenzymes/metabolism , Phosphoric Diester Hydrolases/genetics , Phosphoric Diester Hydrolases/metabolism , Polymorphism, Single Nucleotide , Protein Prenylation , RNA, Double-Stranded/chemistry , RNA, Double-Stranded/genetics , RNA, Viral/chemistry , RNA, Viral/genetics , Retroelements , SARS-CoV-2/genetics , Severity of Illness Index , Virus Replication
4.
Trends Biochem Sci ; 47(1): 23-38, 2022 01.
Article in English | MEDLINE | ID: covidwho-1401892

ABSTRACT

RNA viruses interact with a wide range of cellular RNA-binding proteins (RBPs) during their life cycle. The prevalence of these host-virus interactions has been highlighted by new methods that elucidate the composition of viral ribonucleoproteins (vRNPs). Applied to 11 viruses so far, these approaches have revealed hundreds of cellular RBPs that interact with viral (v)RNA in infected cells. However, consistency across methods is limited, raising questions about methodological considerations when designing and interpreting these studies. Here, we discuss these caveats and, through comparing available vRNA interactomes, describe RBPs that are consistently identified as vRNP components and outline their potential roles in infection. In summary, these novel approaches have uncovered a new universe of host-virus interactions holding great therapeutic potential.


Subject(s)
Proteome , RNA, Viral , Cell Communication , Host Microbial Interactions , Host-Pathogen Interactions , Proteome/metabolism , RNA, Viral/genetics , Ribonucleoproteins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL